Green tea catechins are potent sensitizers of ryanodine receptor type 1 (RyR1).

نویسندگان

  • Wei Feng
  • Gennady Cherednichenko
  • Chris W Ward
  • Isela T Padilla
  • Elaine Cabrales
  • José R Lopez
  • José M Eltit
  • Paul D Allen
  • Isaac N Pessah
چکیده

Catechins, polyphenols extracted from green tea leaves, have a broad range of biological activities although the specific molecular mechanisms responsible are not known. At the high experimental concentrations typically used polyphenols bind to membrane phospholipid and also are easily auto-oxidized to generate superoxide anion and semiquinones, and can adduct to protein thiols. We report that the type 1 ryanodine receptor (RyR1) is a molecular target that responds to nanomolar (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG). Single channel analyses demonstrate EGCG (5-10nM) increases channel open probability (Po) twofold, by lengthening open dwell time. The degree of channel activation is concentration-dependent and is rapidly and fully reversible. Four related catechins, EGCG, ECG, EGC ((-)-epigallocatechin) and EC ((-)-epicatechin) showed a rank order of activity toward RyR1 (EGCG>ECG>>EGC>>>EC). EGCG and ECG enhance the sensitivity of RyR1 to activation by < or =100microM cytoplasmic Ca(2+) without altering inhibitory potency by >100microM Ca(2+). EGCG as high as 10microM in the extracellular medium potentiated Ca(2+) transient amplitudes evoked by electrical stimuli applied to intact myotubes and adult FDB fibers, without eliciting spontaneous Ca(2+) release or slowing Ca(2+) transient recovery. The results identify RyR1 as a sensitive target for the major tea catechins EGCG and ECG, and this interaction is likely to contribute to their observed biological activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinated regulation of murine cardiomyocyte contractility by nanomolar (-)-epigallocatechin-3-gallate, the major green tea catechin.

Green tea polyphenolic catechins exhibit biological activity in a wide variety of cell types. Although reports in the lay and scientific literature suggest therapeutic potential for improving cardiovascular health, the underlying molecular mechanisms of action remain unclear. Previous studies have implicated a wide range of molecular targets in cardiac muscle for the major green tea catechin, (...

متن کامل

Green tea catechins inhibit vascular endothelial growth factor receptor phosphorylation.

Vascular endothelial growth factor (VEGF) receptors (VEGFR) play a major role in tumor angiogenesis and, thus, represent attractive targets for the development of novel anticancer therapeutics. In this work, we report that green tea catechins are novel inhibitors of VEGFR-2 activity. Physiological concentrations (0.01-1 microM) of epigallocatechin-3 gallate, catechin-3 gallate, and, to a lesser...

متن کامل

Interaction of green tea catechins with breast cancer endocrine treatment: a systematic review.

Recent data have shown strong chemopreventive and possibly cancer chemotherapeutic effects of green tea polyphenols and EGCG against breast cancer. This systematic review aims to synthesize data on the possible interaction of green tea catechins with breast cancer endocrine treatment. Electronic databases were searched with the appropriate search terms. Experimental trials suggest a synergistic...

متن کامل

Postulated role of interdomain interactions within the type 1 ryanodine receptor in the low gain of Ca2+-induced Ca2+ release activity of mammalian skeletal muscle sarcoplasmic reticulum.

Ryanodine receptor (RyR) type 1 (RyR1) exhibits a markedly lower gain of Ca(2+)-induced Ca(2+) release (CICR) activity than RyR type 3 (RyR3) in the sarcoplasmic reticulum (SR) of mammalian skeletal muscle (selective stabilization of the RyR1 channel), and this reduction in the gain is largely eliminated using 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). We have invest...

متن کامل

Designing calcium release channel inhibitors with enhanced electron donor properties: stabilizing the closed state of ryanodine receptor type 1.

New drugs with enhanced electron donor properties that target the ryanodine receptor from skeletal muscle sarcoplasmic reticulum (RyR1) are shown to be potent inhibitors of single-channel activity. In this article, we synthesize derivatives of the channel activator 4-chloro-3-methyl phenol (4-CmC) and the 1,4-benzothiazepine channel inhibitor 4-[-3{1-(4-benzyl) piperidinyl}propionyl]-7-methoxy-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical pharmacology

دوره 80 4  شماره 

صفحات  -

تاریخ انتشار 2010